The FSM process is aimed to form UBM by sputtering deposition orElectro-less Plating, followed with clip bond soldering to reduce wire resistance.
In case of clip bond soldering, an Under Bump Metallurgy (UBM) solder surface in between the Al pad and clip is required. The UBM is composed of different metallic elements, for sputtering deposition is Ti/NiV/Ag and for Electro-less Plating is NiAu/NiPdAu.
The sputtering deposition process can be outlined in the following steps: 1. Deposit Ti/NiV/Ag layer on wafer with high vacuum sputter machine; 2. Coat photoresist; 3. Expose and development with photomask (photo lithography); 4. Shield the Al pad upper surface before etching away excess UBM (etching process). This is a mature, stable, and extremely reliable and has long been adopted by many car electronics and high-end application manufacturers.
Figure 1: The sputtering deposition process needs multiple machines and process including metallic sputtering, photo resistance coating and development, wet etching, and photo resistance removal.
The aforementioned sputtering deposition process is mature and stable at higher production costs and longer production time due to multiple processes employed (including high vacuum sputtering, photo lithography, and etching). This, inevitably, sets back certain more cost sensitive MOSFET components makers.
ProPowertek, your long-term partner caring about your concerns and requirements, has come up with an alternative: the “redox reaction” based Electro-less Plating.
Figure 2: The Electro-less Plating process mandates just one machine to execute a series of Electro-less Plating steps; relative to multi-steps required by sputtering deposition, the Electro-less Plating gives the same results at a relatively simpler process.
The production flow of Electro-less Plating: inspect surface of wafer, put cassette in the wafer load port of machine, read bar code, auto load the recipe required for making the batch from the Manufacturing Execution System (MES), run the recipe automatically, after the process ended, the system prompts operators to remove finished wafers out of the unload port. This seemingly simple production flow is actually composed of a comprehensive chemical reaction under precise control.
Figure 3: Electro-less plating flow chart
In case your products require FSM process for manufacturing and you are focusing on high capability/price value and optimum costs, Electro-less Plating is a good choice as it can deposit NiPdAu film on Al pads and is suitable for clip bond; on the other hand, if you are aiming at high quality and reliability, then choose sputtering deposition for its excellent reliability with high vacuum metal sputtering and photo resistance designed pattern.
Table 1: Electro-less plating V.S. Sputtering deposition
Mr. Yu / Stan
Tel: +886-3-579-9209#5888
email: contact@propowertek.com
Send us a message